Integrated Task Planning and Control for Mobile Manipulators

نویسندگان

  • Jindong Tan
  • Ning Xi
چکیده

This paper presents an integrated task planning and control approach for manipulating a nonholonomic cart by mobile manipulators. The task considered in this study is to manipulate a nonholonomic cart to perform certain tasks such as pushing the cart along a straight line, making a turn at a corner, or tracking a sine wave. The cart manipulation task fully integrates the motion and force planning of the cart, and the planning and control of the mobile manipulators. The motion of the mobile manipulator and the cart is coordinated by a common motion reference. The cart manipulating control has been implemented based on the decoupled mobile manipulation model and the force planning of the cart. The proposed integrated task planning and control approach enables the mobile manipulator complete complicated tasks by regulating its output force. The approach has been tested on a mobile manipulator consisting of a Nomadic XR4000 and a Puma 560 robot arm. The experimental results demonstrate the efficacy of this approach in the mobile manipulation of a nonholonomic cart.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Force/position Control of Redundant Mobile Manipulators

This paper presents a novel force control scheme for redundant mobile manipulators. Based on a decoupled and linearized dynamic model for integrated mobile platform and on-board manipulator, robotic tasks involving both position and output force control are discussed. Take the advantage of the kinematic redundancy of mobile manipulators, explicit force and position control at the same task dire...

متن کامل

Planning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions

This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...

متن کامل

Maximum Allowable Load On Wheeled Mobile Manipulators (RESEARCH NOTE)

This paper develops a computational technique for finding the maximum allowable load of mobile manipulators for a given trajectory. The maximum allowable loads which can be achieved by a mobile manipulator during a given trajectory are limited by the number of factors; probably the dynamic properties of mobile base and mounted manipulator, their actuator limitations and additional constraints a...

متن کامل

Dynamic Load Carrying Capacity of Mobile-Base Flexible-Link Manipulators: Feedback Linearization Control Approach

This paper focuses on the effects of closed- control on the calculation of the dynamic load carrying capacity (DLCC) for mobile-base flexible-link manipulators. In previously proposed methods in the literature of DLCC calculation in flexible robots, an open-loop control scheme is assumed, whereas in reality, robot control is achieved via closed loop approaches which could render the calculated ...

متن کامل

Integrated Task Planning based on Mobility of Mobile Manipulator (M2) Platform

This paper presents an optimized integrated task planning and control approach for manipulating a nonholonomic robot by mobile manipulators. Then, we derive a kinematics model and a mobility of the mobile manipulator(M2) platform considering it as the combined system of the manipulator and the mobile robot. to improve task execution efficiency utilizing the redundancy, optimal trajectory of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002